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Main Points

• The essential features of NIMROD are ready for
attacking research problems associated with low-
frequency MHD activity in fusion-relevant plasmas.

• NIMROD has been formulated to avoid accuracy
constraints on the time step associated with
compressional Alfven waves.  It has been coded in a
modular fashion for flexibility and ease of use.  Parallel
features have been incorporated from the beginning of
code development.

• NIMROD is presently being benchmarked against ideal
MHD instability results from GATO and resistive MHD
instability results from DEBS.  We are also comparing
nonlinear saturation amplitudes between NIMROD and
DEBS.

• Research simulations are underway!  An RFP simulation
in toroidal geometry has been started, and plans for
addressing external modes with a vacuum region outside
the separatrix are being developed.
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Code and Project Description

NIMROD is a suite of codes for solving the two-fluid system
of equations as functions of three spatial dimensions and
time, including all nonlinear effects.  The spatial
discretization uses a mix of quadrilateral and triangular
finite elements over the poloidal plane and Fourier series in
the toroidal direction.  The grid is decomposed into blocks,
which may be run on separate processors of a parallel
computer.  The temporal discretization avoids explicit time-
step limitations associated with natural modes of the two-
fluid equations.

Besides the physics kernel (NIMROD), the suite includes a
grid-generator (FLUXGRID), a preprocessor (NIMSET), a
postprocessor (NIMPLOT), and a graphical user interface
(GUI).



Project Goals

The goal for the NIMROD code is to simulate low-frequency
nonlinear behavior...

• nonlinear evolution of tearing modes
• resistive wall modes
• neoclassical modes

...in realistic experimental geometries...

• D3D
• ITER
• reversed-field pinches
• spheromaks
• etc.

...including plasma rotation and electron dynamics.

An additional goal of the project is explore whether or not
managerial techniques such as integrated product
development  and quality function deployment  can assist a
multi-disciplinary team composed of members at diverse
locations when developing a large-scale computational
tool.



Development Status

Physics Kernel

The physical foundation of NIMROD lies in the two-fluid/
Maxwell system of equations.

Separate Electron and Ion Fluid Equations (quasineutral
and no displacement current):

ne ≅ Zeni ≡ n, Ze ≡ − qi
qe

∂n
∂t

+ ∇ ⋅nVe = 0

mαnα
∂
∂t

+ Vα ⋅ ∇



 Vα = nαqα E + Vα × B( ) − ∇pα − ∇ ⋅ Πα − ηnαqαJ

3
2

∂
∂t

+ Vα ⋅ ∇



pα = − 5

2
pα∇ ⋅ Vα − ∇ ⋅ qα − Πα :∇Vα + Qα

where α=i,e

Maxwell’s:

µ0J = ∇ × B

∂B
∂t

= −∇ × E



Linear combinations produce an equivalent Single-Fluid
form:

ρ = n me + mi
Ze







ρ ∂
∂t

+ V ⋅ ∇



 V = J ×B − ∇ ′p − ∇ ⋅ ′Π

E = −V ×B + 1
en

1− Zeme mi( )
1+ Zeme mi( ) J ×B + ηJ

+ 1

ε0ωp
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∂J
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+ ∇ ⋅ JV + VJ( ) + qα
mα

∇ ′pα + ∇ ⋅ ′Πα( )
α
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
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


where

ωp
2 = nαqα

ε0mαα
∑   ,

′p = p©α
α
∑ , ′Π = Π©α

α
∑  ,

and primes indicate the center of mass reference frame,

p©α = pα + nαmα
3

Vα − V( )2

Π©α = Πα +nαmα Vα − V( ) Vα − V( ) − I ′pα − pα( )



At present we are solving:

ρ ∂V
∂t

= J × B − ∇ ′p + ∇ ⋅ ν∇ V − ρV ⋅ ∇ V

3
2

∂
∂t

+ V ⋅ ∇



 ′p = −5

2
′p ∇ ⋅ V

µ0J = ∇ × B

∂B
∂t

= −∇ × E

with the generalized Ohm’s law including as much as

E = −V ×B + 1
en

1− Zeme mi( )
1+ Zeme mi( ) J ×B + ηJ + 1

ε0ωp
2

∂J
∂t







These equations contain the normal modes of our complete
system, and our success with the present implementation
bodes well for solving the complete system.



NIMROD represents functions of space with 2-D finite
elements for the poloidal plane and Fourier series for the
perpendicular direction (toroidal or periodic linear).

The poloidal plane is decomposed into an unstructured
collection of blocks.  This permits geometric flexibility and
creates a natural decomposition for running on parallel
machines, where MPI is used for communication between
processors.

NIMROD Grid
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The blocks containing triangles are themselves
unstructured and may be used for complex boundary
shapes or for singular points in the grid.  [However, we
typically use degenerate rectangles at the O-point of the
grid.]

Scrape-Off Layer Detail
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Functions of space have different basis functions according
to the element shape:

• Quadrilaterals use bilinear basis functions for
dependent variables.

The grid and equilibrium quantities (separated from the
perturbed quantities) are treated with bicubic splines.

• Triangles use linear basis functions for all functions.



The NIMROD kernel is written in a highly modular fashion.
The integrand routine for each equation is coded separately
from the integration procedures, which are generic to each
block type:

MANAGEMENT
(nimrod.f)

INTEGRAND
(integrands.f)

mathematics
(math_tran.f)

communication
(edge.f)

boundary
conditions

(boundary.f)

quadrilateral
quadratures

(rblock.f)

triangle
quadratures

(tblock.f)

interpolation
(tri_linear.f)

interpolation 
and splining
(bicube.f and

bilinear.f)

linear solver
(iter_cg_f90.f)

Equation-specific routines are inserted at the BOLD levels
only, providing flexibility for developers and users.



NIMROD will eventually use an implicit advance for the
magnetic field and velocity.  It presently uses a semi-implicit
formulation.

• The first nonlinear version of NIMROD uses a time-
split, semi-implicit algorithm.

-> Toroidal mode coupling only appears in explicit
terms, so matrices are linear in mode number.

-> Matrices are symmetric, positive definite.

-> This approach has provided a fast development
path to meaningful research computations.

• An implicit algorithm will be more robust and easier to
use.

-> Requires inverting matrices that couple Fourier
harmonics.

-> Will permit accurate computations including the Hall
effect at large times steps.  [Requires a
nonsymmetric matrix solver.]

-> An existing implicit version has been tested on
single toroidal mode MHD waves.



Implicit vs. Semi-implicit formulations (cold plasma only)

Implicit:

υ=Zeme/mi
fΩ=numerical time-centering parameter

E = 1

ε0ωp
2

∆J
∆t

+ fΩB∗ × Vn+1 −
1− υ( )
1+ υ( )

1
en

Jn+1





+ 1− fΩ( )B∗ × Vn −
1− υ( )
1+ υ( )

1
en

Jn





Vn+1 = Vn + ∆t
ρ

fΩ∆J + Jn( ) ×B∗

Eimp = 1

ε0ωp
2

∆J
∆t

+
fΩ
2 ∆t

ρ
B∗ 2

I −B∗ B∗



 ⋅ ∆J −

1− υ( )
1+ υ( )

fΩ
en

B∗ × ∆J

Eexp = B∗ × Vn + fΩ∆t
ρ

B∗ 2
I −B∗ B∗



 ⋅ Jn −

1− υ( )
1+ υ( )

1
en

B∗ × Jn

∆B + ∇ × Z ⋅ ∇ × ∆ B = −∆t∇ × Eexp

Z = c2

ωp
2 I +

fΩ
2 ∆t2

µ0ρ
B∗ 2

I −B∗ B∗



 −

1− υ( )
1+ υ( )

fΩ∆t
µ0en

B∗ × I

1.  Solve implicit equation for B.
2.  Advance V with time-centered B.
3.  Iterate for nonlinear convergence.



Semi-implicit:

fm, fh are numerical coefficients

Vn+1 = Vn + ∆t
ρ

Jn ×Bn

Zm = c2

ωp
2 I + fm∆t2

µ0ρ
B0

2I −B0B0( )
Em = B × Vn+1

Zh =
1− υ( )
1+ υ( )

fh∆t
µ0en

B0 I

Eh =
1− υ( )
1+ υ( )

1
en

B∗∗ × J∗∗

∆B + ∇ × Zm,h ⋅ ∇ × ∆ B = −∆t∇ × Em,h

1.  Advance V with old J and B.
2.  Solve the matrix equation for ∆B using Zm and Em.
3.  Solve the matrix equation for ∆B using Zh and Eh

      with ∆t->∆t/2.
4.  Repeat 3. with predicted J and the full ∆t,
      completing the Hall split.



In both the implicit and semi-implicit formulations, the shear
Alfven wave factors from the compressional wave in the
numerical dispersion relation.

Abbreviation of analysis for the implicit formulation:

[see Glasser, “Numerical Analysis of the NIMROD
Formulation,” poster 1C26, 1997 Annual Sherwood Fusion
Theory Conference for details—available from
http://wwwofe.er.doe.gov/More_HTML/NIMROD.HTML]

Assume an eik ⋅x dependence.

B0 uniform in the √b direction.

λ ≡ time − step eigenvalue

Z ≡ effective impedance tensor

Temporal discretization only:

λ − 1( )B + ∇ × Z ⋅ ∇ × B( ) = 0

D ⋅ ƒB = 0, D ≡ λ − 1( )I − k × Z ⋅ k × I( )
D ≡ det D ≈ λ − 1( ) λ − 1( ) + Z ⊥ k||

2[ ] λ − 1( ) + Z ⊥ k ⊥
2[ ]



Include 2D finite element discretization:

K ≡ −
exp ik ⋅ x j − x i( )[ ] ∇α i∇α jdx∫j∑

exp ik ⋅ x j − x i( )[ ] α iα jdx∫j∑
,

where α j is the bilinear basis element centered

at vertex j.

D ≈ λ − 1( ) + Z ⊥ √b√b:K( )[ ] ×

λ − 1( ) λ − 1( ) + Z ⊥ tr K( )[ ] +

Z ⊥
2 √b√b:K( )K: I − √b√b( ) − √b ⋅K ⋅ I − √b√b( ) ⋅K ⋅ √b[ ]













• The last line represents truncation error that couples the
zero-frequency mode with the compressional branch.
This has not produced any observable effects in the
simulations completed to date.

• That the shear branch factors from the compressional
branch implies that the formulation effectively treats the
stiffness of the MHD equations.  Validation results
confirm this conclusion.



Linear Solver

NIMROD’s performance, hence its ability to solve ‘cutting
edge’ physics problems, depends critically on the linear
solver used to invert matrices.

• Equations have been formulated so that matrices are
symmetric, positive definite (so far).

• We presently use a preconditioned conjugate gradient
technique.

-> guaranteed convergence
-> minimal memory requirements
-> basic iteration scheme involves matrix/vector

 products, so parallel computing is not a problem

• Existing preconditioner options:

-> basic diagonal ‘point block’ inversion
-> grid-block direct inversion (‘additive Schwartz’)
-> incomplete factorization
-> 1D direct solves

• Other possibilities for preconditioning:

-> linking to packaged routines such as ISIS and AZTEC
-> multigrid

• We plan to implement a solver for nonsymmetric matrices
(GMRES?) to enhance numerical flexibility.



Preprocessing

• FLUXGRID:

-> Reads the output from an equilibrium code (either direct
or inverse solve).

-> Or  reads an equilibrium and eigenfunction (as an initial
perturbation) from GATO.

-> Generates a grid based on equilibrium flux surfaces.

• NIMSET:

-> Reads a FLUXGRID data file.
-> Decomposes the grid into blocks.
-> Generates block connections and vertex connections

within blocks of unstructured triangles.
-> Generates an initial perturbation.
-> Writes the initial NIMROD dump file.



Postprocessing

• NIMPLOT:

-> Reads NIMROD dump files.
-> Generates binary data files for XDRAW graphics.
-> Creates Poincare surfaces of section data.
-> We plan to have an option for generating DX data files

(presently being done from NIMROD directly).

• XDRAW:

-> Publicly available
-> Grid plots
-> Spatial slices
-> Slices showing temporal dependence
-> Time-history traces
-> Contour plots over the poloidal plane (by Fourier mode or

at a specified toroidal angle)
*See Poincare movie demonstration.

• IBM Data Explorer:

-> Multi-dimensional movies
-> Sophisticated, 3D data rendering available



Validation Program

Shear Alfven Wave Tests

• Uniform rectangular grid, doubly periodic, 1m on a side.
• Neither k nor B are aligned with the grid (kx=ky=2π,

kz=23/2π).
• k|| k = 2.5%
• The two traces for each formulation are for an 8x8 grid 

[larger error] and for a 16x16 grid.

implicit frequency error
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The largest time-step cases for the 16x16 grids have
vA∆t ∆x = 37.  The strong spatial convergence verifies the
decoupling of shear and compressional waves in the
numerical dispersion relations.

Our semi-implicit formulation shows no loss of accuracy
with respect to the implicit formulation.



Magneto-acoustic Waves

• Uniform rectangular grid, periodic in y, 1m on a side.
• ky=2π
• ω2 = ωA

2 1+ γβ
2





 , γ = 5

3

β = 2µ0P0 B
0
2 MA CFL cells 1+γβ/2 (ω/ωA)2

1 2.2 16 1.833 1.684
1 1.1 16 1.833 1.843
1 0.54 16 1.833 1.836
1 1.1 32 1.833 1.831

1/2 1.9 16 1.417 1.308
1/2 0.95 16 1.417 1.416

Whistler Waves

• Hall-only in Ohm’s law (low frequency limit).

det ωw
2 I −

k ⋅B0( )2
µ0

2e2n2 k2I − kk( )











= 0

•  k || B0 , k=2π , z is Fourier, y is finite element.

√k ωw∆t cells ω/ωw ωi/ωw

√z 0.314 0.75 -0.013
√z 0.157 0.86 -0.0046
√z 0.0785 0.93 -0.0014
√y 0.314 8 0.73 -0.013
√y 0.157 8 0.85 -0.0046
√y 0.157 16 0.86 -0.0044



Ideal MHD Instabilities

Soloviev Ideal Internal Mode
(Courtesy of Dalton Schnack)

R=3m, a=1m, q0=0.4, elongation=1

n=2 mode  (Berger, et al. find a growth rate of 2.56X105)

dissipation1 grid ∆t growth rate2

1000 32x32 2.5X10-8 2.06X105

100 32x32 2.5X10-8 2.30X105

10 32x32 2.5X10-8 2.36X105

0 32x32 2.5X10-8 2.36X105

0 32x32 1.3X10-8 2.40X105

1000 64x64 2.5X10-8 2.05X105

0 64x64 2.5X10-8 2.40X105

1Electrical diffusivity and kinetic viscosity.



D3D Ideal Internal Kink Modes

n=1 growth rate comparison* with GATO calculations:

dissipation1 grid2 βN=0 βN=1 βN=2

GATO 100x200 stable 0.038 0.087
S=1.6X104 65x31 0.030 0.055 0.092
S=1.6X105 65x63 insuf. grid 0.043 0.081
same ν, but

η=0
65x31 stable 0.032 0.077

1NIMROD simulations have resistivity, viscosity, and no-
slip boundary conditions.  GATO is ideal and uses free-slip
boundary conditions

2The NIMROD grid is uniform in the flux surface-normal
direction in these cases, while the GATO grid is packed at
low-order rational surfaces.

*The NIMROD results are not fully converged.

Convergence study for S=1.6X104, βN=2 case:

grid ∆t dissipation
centering

semi-imp
coefficient

growth rate

65x31 2X10-8 1 1.5 0.0865
65x31 1X10-8 1 1.5 0.0916
65x31 5X10-9 1 1.5 0.0925
65x31 1X10-8 1/2 1.0 0.0921
25x23 1X10-8 1 1.5 0.101
33x31 1X10-8 1 1.5 0.0916
49x47 1X10-8 1 1.5 0.0866
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Linear Eigenfunction Comparison for the βN=1 Case
GATO NIMROD
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Nonlinear Saturation of the βN=2, D3D Ideal Internal Kink
with S decreased to 1.6X103

(larger S will require more spatial resolution)

*The advection term is not included in the momentum
equation.

[Also see the Poincare surface of section movie.]
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Linear Resistive MHD Instability

• External mode in a linear periodic cylinder with a 
conducting shell at the plasma surface.

• 0-β, paramagnetic equilibrium (flow removed)

• Normalized current density on axis is 3.5.  Robinson found
marginal resistive stability at 2.5 and marginal ideal 
stability at 4.1 for m=1, k=-0.6 (no viscosity).
[D. C. Robinson, Nuclear Fusion 18, 939 (1978)]

• First convergence study performed at S=1000 and Pm=1.

• DEBS converges on γτΑ=0.028

• NIMROD:

growth rate (29x31 grid)
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Eigenfunction Comparison (Br) for
a Tearing Mode in a Periodic Cylinder

1. No viscosity
2. S=1000 for NIMROD and DEBS
3. Paramagnetic Equilibrium
4. m=1, k=-0.60
5. A convergence study for growth 
rates is in progress, γτA~0.01.
6. Normalized J(0)=3.0



Nonlinear Saturation of the Resistive Mode

• Same parameters as the J(0)=3.5 linear case, except the 
pinch flow is retained.

• Advection is included in the momentum equation.
• Computed with the k=0 and k=0.6 Fourier modes only.
• 29x31 grid and ∆t=0.4 τA in NIMROD
• DEBS n=1, Br saturation amplitude is 0.031 (same radial 
mesh, ∆t=0.1 τA, no convergence check )
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Quasilinear Effects

before after

J.B/B**2
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Note: problems near the magnetic axis result from the
computation of J, which are used for the diagnostics only.



Plans for Completing the First
Production Version

1.  Presently the code can only apply boundary conditions
to blocks of rectangles.  We need to add boundary routines
for the blocks of triangles.  This is essential, because the
triangles will be used for gridding complex experimental
wall structures.

2.  We intend to keep the source code in Concurrent
Versions System (CVS) format to reduce the burden of
code development by multiple users.

Intermediate-term plans

1.  Complete the validation plan.

2.  Begin research simulations:  a simulation of an RFP in
toroidal geometry is underway.

3.  Improve the linear-solver preconditioner for shorter
execution times.

4.  Implement a ‘vacuum’ region mock-up via a highly
diffusive region that moves with the plasma surface.  This
will allow nonlinear simulations of external modes in
tokamaks.

5.  Implement R=0 boundary conditions for spheromak
simulations.

6.  Finish coding the complete implicit formulation.



Summary

• The effort spent developing a good numerical formulation
is paying dividends in the form of rapid benchmarking
progress.

• Primary features of NIMROD include flexibility regarding
the terms used in the fluid equations and in the geometry
of the problem domain.

• NIMROD has been developed with modular
programming and user-interface features to make the
code user-friendly.

• NIMROD is essentially ready for attacking research
problems.

Don’t sign-up, net-up!

This poster will be available from

http://wwwofe.er.doe.gov/More_HTML/NIMROD.HTML

along with presentations from previous
meetings.


